## Exercise Sheet #5

Course Instructor: Ethan Ackelsberg Teaching Assistant: Felipe Hernández

- **P1.** Let  $(X, \mathcal{B}, \mu)$   $\sigma$ -finite measure space. Show that
  - (a)  $\mu$  is s-finite.
  - (b)  $\mu$  is semi-finite.
- **P2.** Let  $(X, \mathcal{B}, \mu)$  be a measure space. Define  $\tilde{\mathcal{B}} = \{E \subseteq X \mid \forall F \in \mathcal{B}, \mu(F) < \infty \Rightarrow E \cap F \in \mathcal{B}\}.$ 
  - (a) Prove that  $\tilde{\mathcal{B}}$  is a sigma algebra.
  - (b) Define  $\tilde{\mu}$  on M by  $\tilde{\mu}(E) = \mu(E)$  for  $E \in \mathcal{B}$  and  $\tilde{\mu}(E) = \infty$  otherwise. Prove that  $\tilde{\mu}$  is a saturated measure on  $\tilde{\mathcal{B}}$ .
- **P3.** Let  $\mathcal{P}$  be a  $\pi$ -system that contains X and  $\mathcal{F}$  a family of functions from X to  $\mathbb{R}$  such that
  - (a)  $A \in \mathcal{P} \Longrightarrow \mathbb{1}_A \in \mathcal{F}$ ,
  - (b)  $\mathcal{F}$  is a real vector space:  $f, g \in \mathcal{F}$  and  $c \in \mathbb{R} \Longrightarrow cf + g \in \mathcal{F}$ ,
  - (c) if  $(f_n)_{n\in\mathbb{N}}$  is a non-decreasing sequence of positive functions in  $\mathcal{F}$  and  $f=\lim_{n\to\infty} f_n$  bounded, then  $f\in\mathcal{F}$ .

Show that  $\mathcal{F}$  contains the set  $\{f: X \to \mathbb{R} \mid f \text{ is a bounded } \sigma(\mathcal{P})\text{-measurable function}\}.$ 

- **P4.** We will show that if  $(X, \mathcal{B}, \mu)$  is a non-atomic probability space, then for all  $t \in [0, 1]$ , there is  $E \in \mathcal{B}$  such that  $\mu(E) = t$ . For this:
  - (a) Show that for every  $s \in (0,1)$ , there is  $E \in \mathcal{B}$  such that  $\mu(E) \in (0,s)$ .
  - (b) Fix  $t \in (0,1)$ . Construct a family of disjoint sets  $(E_n)_{n \in \mathbb{N}} \subseteq \mathcal{B}$  such that:
    - i) For each  $n \in \mathbb{N}$ ,  $\mu(\bigcup_{i=1}^n E_i) < t$ .
    - ii) If it is possible, for each  $n \in \mathbb{N}$ ,  $E_n$  is chosen such that  $\mu(E_n) \geq \frac{1}{n}$ .

Show that  $\mu(\bigcup_{n\in\mathbb{N}} E_n) = t$ .

**Hint:** If the latter is not true, then find  $F \in \mathcal{B}$  such that  $0 < \mu(F) < t - \mu(\bigcup_{n \in \mathbb{N}} E_n)$ . What does this imply for condition ii) of the definition of the  $(E_n)_{n \in \mathbb{N}}$ ?

- **P5.** Verify if the following are examples of  $\pi$ -system and/or  $\lambda$ -systems:
  - (a) The collection  $\mathcal{P} = \{(a, b] : a, b \in \mathbb{R}\}$  of half-open intervals in  $\mathbb{R}$
  - (b) Given two measurable spaces  $(X, \mathcal{B})$  and  $(Y, \mathcal{C})$ , the family  $\mathcal{P} = \{B \times C : B \in \mathcal{B}, C \in \mathcal{C}\}$  of "rectangles" in  $X \times Y$ .
  - (c) For two probability measures  $\mu, \nu$  on a measurable space  $(X, \mathcal{B})$ , the family  $\mathcal{L} = \{E \in \mathcal{B} : \mu(E) = \nu(E)\}.$